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We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma
flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion
velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the
electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed
formalism based on chemical elements and fully symmetric with the classical transport theory based on
chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of
chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for
numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental
transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local
equilibrium.
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I. INTRODUCTION

Extensive interest in the mathematical modeling of
chemically reacting mixtures has grown significantly over
the past decades. The subject is indeed related to a vast
amount of applications such as hypersonic flows, combustion
problems, plasma torches, and electric plasma thrusters.

High-temperature gases are made of several chemical spe-
cies, each of them behaving with good approximation as a
thermally perfect gas. Under strong nonequilibrium condi-
tions �SNE�, such mixtures can be described as a continuum
governed by an extended Navier-Stokes system �1� including
global continuity, momentum and total-energy equations, a
continuity equation for each chemical species accounting for
finite-rate chemistry, and an energy equation for each inter-
nal energy mode.

This formalism has two drawbacks. The computational
complexity is considerable due to the large number of equa-
tions and to the presence stiff source terms in the species and
energy equations; reaction rates and energy relaxation rates
are affected by considerable uncertainties.

In many practical circumstances, the gas mixture locally
approaches thermodynamic equilibrium �intended as the
combination of thermal equilibrium and chemical equilib-
rium�. While an inviscid gas can attain local thermodynamic
equilibrium, a viscous flow always remains in nonequilib-
rium due to the dissipative effects. Therefore, in near-
equilibrium viscous flows we deal with weak deviations
from equilibrium or weak nonequilibrium �WNE�. The flow
classification as WNE and SNE is widely used in the modern
kinetic theory �2–4� �the notations SNE and WNE were in-
troduced by Brun �2��. This subdivision is based on the rela-
tions between the characteristic times of collisional processes
and the macroscopic flow time.

In WNE conditions, species and internal energy modes
equations can be discarded; only the global energy equation
should be retained together with global continuity and mo-
mentum. In the Euler approximation of an inviscid noncon-
ducting flow, the chemical composition is calculated from an
algebraic system �4,5� which requires the knowledge of the
local pressure, temperature, and elemental fractions. In this
case, the elemental fractions remain constant along a trajec-
tory. In the viscous gas approximation, we should account
for mixing and demixing phenomena and therefore solve, for
each element, a continuity equation containing the corre-
sponding diffusion velocity �4,6,7�. In practical implementa-
tions, mixing and demixing are often neglected and hence
the elemental fractions are assumed to be constant even in
viscous flow regimes. A constant elemental fraction is a rea-
sonable approximation for high-speed flows with uniform
upstream composition. In low speed or mixing regions, when
transport phenomena such as mass diffusion become impor-
tant �8�, mixing and demixing should be taken into account.

The extended equilibrium formalism suggested in the
present paper takes into account mixing and demixing and, at
the same time, overcomes the two drawbacks previously
mentioned: the number of equations is reasonably low and
the source terms disappear together with the related uncer-
tainties.

The transport terms appearing in the WNE governing
equations are element diffusion velocities, heat flux, electric
current, and viscous stress tensor. In the recent years, several
methods were proposed to calculate these quantities in a
manner which is fully consistent with the WNE formalism.
We provide here a brief overview of the major findings; for a
detailed literature review, the reader should refer to �9,10�.

In the SNE case, the transport terms, with the exception of
the viscous stress tensor, are related to the gradients of pres-
sure, temperature, and species molar fractions through trans-
port coefficients. In the WNE case, a description of the flow
is provided by another set of macroscopic parameters,
namely, the number densities of elements appear in the gov-
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erning equations as independent variables rather than the
number densities of chemical species. Consequently, the
transport terms should be associated to the gradients of num-
ber densities of elements instead of species.

A rigorous kinetic formalism for the WNE transport prop-
erties was developed by Rydalevskaya and co-workers �4,7�.
In these studies, the elemental and species diffusion veloci-
ties and the heat flux were expressed in terms of the gradi-
ents of temperature, total number density, and number den-
sities of elements; new diffusion and thermal diffusion
coefficients for elements were introduced. Later on, Ern and
Giovangigli �6� using a similar approach suggested a formu-
lation relating the transport terms with the gradients of pres-
sure, temperature, and molar fractions of chemical elements.
In their work Ern and Giovangigli introduced the coefficients
for elemental diffusion velocities; an analogous formulation
for the heat flux and electric current was not proposed. A few
years before, a simplified and physically appealing version of
elemental diffusion coefficients was given by Murphy
�11–13�; however Murphy’s work was limited to the special
case of two homonuclear gases and a proper formulation for
the heat flux was not included.

Both, Murphy before and Ern and Giovangigli later, in-
troduced certain quantities named here as chemical deriva-
tives. Chemical derivatives provide a measure of the change
in mixture composition with respect to a variation in tem-
perature, pressure, or elemental fractions �14�. In the two
aforementioned works, the calculation of these quantities
was not explicitly addressed. In Murphy’s work, the chemi-
cal derivatives are probably calculated numerically by finite
differences. This procedure is computationally expensive and
prone to numerical error since it requires evaluating several
times the mixture composition. Ern and Giovangigli sug-
gested to calculate the chemical derivatives by solving a set
of linear systems; however details of the procedure are not
provided.

More recently, Rini �9,10� et al. derived a complete set of
elemental transport coefficients without using chemical de-
rivatives. Differently from the previous works, elemental
mass fraction gradients were used instead of molar fraction
gradients. This method was conceptually new; however the
mathematical procedure adopted is lengthy and the physical
interpretation of this formulation is not straightforward.

In a recent publication �14�, a new technique to calculate
the chemical derivatives using a fully analytical method was
introduced. This technique strongly reduces the computa-
tional effort and improves the calculation accuracy. Starting
from these findings, the present research is aimed to simplify
and rearrange in a complete form the general framework of
transport properties in WNE reacting flows. The underlying
physics we propose is identical to the formulation of Ern and
Giovangigli which is extended to include also the heat flux
vector and electric current. Moreover, we introduce a formal-
ism for elemental transport coefficients which is fully sym-
metric with the one used by the transport theory in the SNE
case �3� or in the case of frozen chemical reactions �15�,
when molar �or mass� fractions of chemical species are con-
sidered as macroscopic variables.

The reduction to elemental diffusion coefficients is ap-
plied to the symmetric formulation of species diffusion coef-

ficients �Waldmann �16�, Waldmann and Trübenbacher �17�,
Van de Ree �18�, Curtiss �19�, and Ferziger and Kaper �15��.
An equivalent approach applies to the asymmetric formula-
tion �Hirschfelder et al. �20� and Chapman and Cowling
�21��.

II. GAS MIXTURE PROPERTIES

This section is dedicated to summarize some properties
which characterize a perfect gas made of several chemical
species. To make the exposition easier, we can use as an
example a simple mixture of carbon and oxygen with a set of
chemical species given by �C,O,CO2,CO,O2�. The total
number of species is ns. All the quantities related to a given
species are labeled using roman subscripts i , j ,k. Each spe-
cies is obtained by combining ne chemical elements which,
for this particular example, are �C, O�. Elemental properties
are identified by the Greek indices � ,� ,�. We also define a
chemical matrix whose elements ��i indicate the number of
particles of element � contained in species i, for example,
�OO2

=2, �OC=0, and �CC=1.

A. Molar and mass fractions

The chemical composition of a mixture of perfect gases is
usually defined by giving species molar fractions xi or mass
fractions yi. Species molar fractions represent the ratio be-
tween the number density of a given species ni and the total
number density of the mixture n=�ini. Analogously, species
mass fractions are defined as the ratio between the partial
density of a given species �i and the total density of the
mixture �=�i�i. By definition, both quantities satisfy the
constraints �ixi=1 and �iyi=1.

Molar and mass fractions of elements are defined in anal-
ogy with chemical species. Element molar fractions repre-
sent the ratio between the number density of a given element
n�=�i��ini and the total number density of elements in the
mixture ��n�. The same definition applies to element mass
fractions when the appropriate partial densities ��

=�i��i�M� /Mi��i are considered. Here Mi and M� are the
molar masses of chemical species and chemical elements,
respectively. From the definition, element and species frac-
tions are related as

x� =

�
i

��ixi

�
�,i

��ixi

, y� = �
i

��i
M�

Mi
yi. �1�

Both these quantities are subjected to the usual constraints
��x�=1 and ��y�=1. Relations similar to those relative to
chemical species link element molar and mass fractions

x� =
y�/M�

�
�

y�/M�

, y� =
x�M�

�
�

x�M�

. �2�

B. Chemical derivatives

When a reacting gas mixture is in local thermodynamic
equilibrium, its complete thermodynamic state is known if
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pressure, temperature, and element molar fractions �or mass
fractions� are assigned at each point in space. All the remain-
ing mixture properties, including the chemical composition,
are functions of these quantities �5�. In this case, the gradi-
ents of species molar and mass fractions can be expressed in
terms of the gradients of element fractions, pressure, and
temperature,

�� xi = �
�

�xi

�x�

�� x� + P
�xi

�P
�� ln P + T

�xi

�T
�� ln T , �3�

�� yi = �
�

�yi

�y�

�� y� + P
�yi

�P
�� ln P + T

�yi

�T
�� ln T . �4�

The quantities appearing in Eqs. �3� and �4� are named
chemical derivatives for molar and mass fractions, respec-
tively. In a recent work �14�, it was shown how they can be
calculated using simple analytical expressions; the order of
magnitude of these quantities is �xi /�x�, P�xi /�P, and
T�xi /�T=O�1� and �yi /�y�, P�yi /�P, and T�yi /�T=O�1�.

III. GOVERNING EQUATIONS

As anticipated in Sec. I, the basic equations of WNE re-
acting mixtures express the conservation laws of mass, mo-
mentum, and energy �22�. If ionization occurs, in addition to

the gravitational field g� , the electric field E� and magnetic

field B� must be accounted among the external forces. These
fields’ behavior is governed by the Maxwell equations �23�.
In the most general case of a WNE flow, the extended
Navier-Stokes system reads as

�i� global continuity equation

��

�t
+ �� · ��u�� = 0, �5�

�ii� momentum equation

��u�

�t
+ �� · ��u�u�� = − �� P + �� · �̄̄ + �g� + QE� + J� ∧ B� , �6�

�iii� global energy equation

��e0

�t
+ �� · ��e0u�� = − �� · �Pu�� + �� · ��̄̄ · u�� − �� · q� + �u� · g�

+ J� · E� , �7�

�iv� element continuity equations

���

�t
+ �� · ���u�� = − �� · ���v��� . �8�

Some new variables are introduced: u� and v�� are the mean
fluid velocity and the elemental diffusion velocities; �̄̄ is the

viscous stress tensor; J� is the electric current; e0 is the mix-
ture total energy per unit mass, i.e., the sum of internal and
kinetic energy; and q� is the heat flux. The mixture charge per
unit volume is Q=ne�ixiqi where e is the elementary charge
and qi is the number of elementary charges contained in a

particle of species i. In many practical circumstances, even if
ionized, the mixture is quasineutral, therefore Q is neglected.
More details on the derivation of this set of equations and on
their field of application are provided in Ref. �24�.

IV. TRANSPORT TERMS

This section is dedicated to express the elemental diffu-
sion velocities, heat flux, and electric current as linear func-
tions of the spatial gradients of elemental fractions, pressure,
and temperature in addition to the electric field. Chemical
derivatives, as derived in Ref. �14�, are used. Such a model is
valid for the general case of a reacting flow near local equi-
librium. The exposition starts summarizing some properties
regarding the species diffusion velocities and the related set
of diffusion coefficients. Afterward, elemental diffusion co-
efficients are introduced. Finally, heat flux and electric cur-
rent are included in the overall framework.

A. Species diffusion velocities

According to the classical transport theory for a nonreact-
ing mixture �15� or for the SNE flow with finite-rate chem-
istry �3,25�, species diffusion velocities are linearly related to
the driving forces through the multicomponent diffusion co-
efficients,

v� i = − �
j

Dijd� j . �9�

The Dij matrix, consistently with the Onsager reciprocal re-
lations, is symmetric and the diagonal terms are positive. The
driving forces consist of species molar fractions gradients,
pressure gradient, temperature gradient, and electric field,

d� i = �� xi + ki
P�� ln P + ki

T�� ln T + ki
EE� . �10�

The quantities ki
P=xi−yi and ki

T are the pressure and thermal
diffusion ratios, respectively; we define as electric diffusion
ratios ki

E=� j�yixjqj −yjxiqi� which are zero in case of nonion-

ized mixture. The electric field is scaled as E� =eE� /kBT where
kB is the Boltzmann constant. In a thermal equilibrium par-
tially ionized and unmagnetized plasma, the magnetic field
does not play any role in species diffusion as well as the
gravitational field �24�. Equation �9� may be rearranged as

v� i = − �
j

Dij�� xj − Di
P�� ln P − Di

T�� ln T − Di
EE� , �11�

where the pressure, thermal, and electric diffusion coeffi-
cients are

Di
P/T/E = �

j

Dijkj
P/T/E. �12�

Sometimes the species diffusion velocities are evaluated
from a different approach which makes use of the Stefan-
Maxwell equations �8� ��ij is the Kronecker tensor�,

d� i = �
j

Aijv� j , �13�
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Aij =
xixj

Dij	ij���
− �ij�

k

xixk

Dik	ik���
. �14�

The Stefan-Maxwell coefficients Aij are symmetric as well as
the binary diffusion coefficients Dij and the factors 	ij���
taking into account the contribution of Laguerre-Sonine �24�
polynomials of order � with 	ij�1�=1.

All these quantities satisfy a set of constraints derived
from the mass conservation,

�
i

yiv� i = 0, �15�

�
i

d� i = 0, �16�

�
i

yiDij = 0, �17�

�
i

yiDi
P/T/E = 0, �18�

�
i

Aij = 0, �19�

�
i

ki
P/T/E = 0. �20�

Due to Eq. �16�, if we replace the multicomponent diffusion

coefficients in Eq. �9� with D̂ij =Dij +�i where �i are arbitrary
quantities, the latter equations remain unchanged. Analo-
gously, because of Eq. �15�, if we exchange the Stefan-

Maxwell coefficients with Âij =Aij +yj�i, Eq. �13� retains its
validity.

Relations between multicomponent diffusion coefficients
and Stefan-Maxwell coefficients can be retrieved following
the approach first proposed by Condiff �26� and detailed later
on by Giovangigli �27�:

d� i = �
j

Aijv� j = − �
k,j

AijDjkd�k = − �
k,j

ÂijDjkd�k = �
k

��ik − yi�d�k,

�21�

v� i = − �
j

Dijd� j = − �
k,j

DijAjkv�k

= − �
k,j

D̂ijAjkv�k = �
k

��ik − yk�v�k. �22�

The equations we are looking for are

�
j

ÂijDjk = yi − �ik, �23�

�
j

D̂ijAjk = yk − �ik. �24�

The linear systems �23� and �24� may be solved by choosing

the arbitrary constants �i to have Âij =Aij +yiyj�h,k�Ahk� and

D̂ij =Dij +�h,k�Dhk� /ns
2. This choice �as many others� guaran-

tees that the matrices Âij and D̂ij are nonsingular and there-
fore invertible.

Diffusion ratios can be derived from diffusion coefficients
using Eqs. �12� and �23�,

ki
P/T/E = − �

j

AijDj
P/T/E. �25�

B. Elemental diffusion velocities

Elemental diffusion velocities are traditionally calculated
as linear combinations of species diffusion velocities,

v�� = �
i

c�iv� i, c�i = ��i
M�/y�

Mi/yi
. �26�

We propose here an alternative method for evaluating these
quantities which is fully symmetric with the formalism
adopted for species diffusion velocities and relies on the use
of chemical derivatives. Combining Eqs. �9� and �10� with
Eqs. �3� and �26� yields,

v�� = �
i

c�iv� i = − �
i,j

c�iDij��� xj + kj
P�� ln P + kj

T�� ln T + kj
EE��

= − �
�,i,j

c�iDij
�xj

�x�

�� x� − �
i,j

c�iDij


	P
�xj

�P
+ kj

P
�� ln P − �
i,j

c�iDij


	T
�xj

�T
+ kj

T
�� ln T − �
i,j

c�iDijkj
EE� . �27�

Defining the elemental diffusion coefficients as

D�� = �
i,j

c�iDij
�xj

�x�

, �28�

D�
P = �

i,j
c�iDij	P

�xj

�P
+ kj

P
 , �29�

D�
T = �

i,j
c�iDij	T

�xj

�T
+ kj

T
 , �30�

D�
E = �

i,j
c�iDijkj

E, �31�

we reduce Eq. �27� to the well-known form of Eq. �11�,

v�� = − �
�

D���� x� − D�
P�� ln P − D�

T�� ln T − D�
EE� . �32�

Introducing the elemental Stefan-Maxwell coefficients
A��, we obtain relations similar to Eqs. �23� and �24�,

�
�

Â��D�� = y� − ���, �33�
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�
�

D̂��A�� = y� − ���. �34�

Equations �33� and �34� are two systems of ne equations

which can be solved choosing Â��=A��+y���=A��

+y�y���,��A��� and D̂��=D��+��=D��+��,��D��� /ne
2

among the many possible choices of the arbitrary quantities
��. In opposition to what happens for chemical species, the
matrices D�� and A�� are in general not symmetric except
when ne=2.

Multiplying Eq. �32� by A�� and summing over the diffu-
sion velocities, we retrieve the Stefan-Maxwell equations for
elemental diffusion,

d�� = �
�

A��v��. �35�

Elemental driving forces should be defined as

d�� = �� x� + k�
P�� ln P + k�

T�� ln T + k�
EE� , �36�

where the diffusion ratios are related to the diffusion coeffi-
cients in the customary way,

k�
P/T/E = − �

�

A��D�
P/T/E. �37�

The inverse relations are

D�
P/T/E = �

�

D��k�
P/T/E. �38�

Multiplying Eq. �35� by D��, we obtain the classical relation
between diffusion velocities and driving forces,

v�� = − �
�

D��d��. �39�

The usual constraints deriving from mass conservation apply,

�
�

y�v�� = 0, �40�

�
�

d�� = 0, �41�

�
�

y�D�� = 0, �42�

�
�

y�D�
P/T/E = 0, �43�

�
�

A�� = 0, �44�

�
�

k�
P/T/E = 0. �45�

The mass conservation constraints are usually enforced
while solving for species or elemental diffusion velocities.
Indeed, in complex chemistry solvers, it is sometimes the
case that all the species mass fractions are considered as
independent unknowns. In this situation, the mass conserva-

tion constraint must result from the governing equations, the
initial conditions, and the boundary conditions. This aspect
was investigated by Giovangigli �27� within the chemical
species formalism and it is known to provide a stabilizing
effect which is beneficial for the solution of the discrete gov-
erning equations. An analogous approach can easily be
adapted to the elemental coefficients and could be useful for
flows at chemical equilibrium when the elemental mass frac-
tions are all considered as independent unknowns.

From an operative point of view, within the chemical spe-
cies framework, one can choose to calculate independently
either the diffusion coefficients Dij or the Stefan-Maxwell
coefficients Aij. On the other hand, the elemental diffusion
coefficients D�� should be first deduced from Dij and then
the elemental Stefan-Maxwell coefficients A�� can be evalu-
ated �if needed� from D��.

As a last remark, we remind that in this section, the el-
emental diffusion coefficients have been defined starting
from the symmetric formulation of the species diffusion co-
efficients. The extension to the asymmetric coefficients can
be performed in an analogous manner and it is left to the
reader.

C. Heat flux

The heat flux vector is calculated according to the classi-
cal kinetic theory as �15�

q� = �
i

hi�iv� i − ���� T − P�
i

Di
T�d� i − ki

T�� ln T� . �46�

Here hi are the species enthalpies per unit mass and �� is the
mixture partial thermal conductivity. Replacing the diffusion
velocities and driving forces in the above equation, the heat
flux becomes a function of the spatial gradients of the el-
emental fractions, pressure, temperature, and of the electric
field,

q� = − �
�

���� x� − �P�� ln P − ��T + �T��� ln T − �EE� .

�47�

Generalized heat conduction coefficients are defined as

�� = �
i,j

�hi�i + Pki
T�Dij

�xj

�x�

, �48�

�P = �
i,j

�hi�i + Pki
T�Dij	P

�xj

�P
+ kj

P
 , �49�

�T = �
i,j

�hi�i + Pki
T�Dij	T

�xj

�T
+ kj

T
 , �50�

�E = �
i,j

�hi�i + Pki
T�Dijkj

E. �51�

Equation �47� can be considered as an extension of the well-
known formulation proposed by Brokaw and Butler �28,29�.
The mixture thermal conductivity is �=��−nkB�iDi

Tki
T.
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D. Electric current

The electric current vector is given by

J� = ne�
i

xiqi�u� + v� i� = Qu� − ne�
i,j

xiqiDijd� j . �52�

Expanding the driving forces in terms of gradients and elec-
tric field, we obtain

J� = Qu� − �
�

���� x� − �P�� ln P − �T�� ln T − �EE� . �53�

Generalized electric conduction coefficients are defined as

�� = ne�
i,j

xiqiDij
�xj

�x�

, �54�

�P = ne�
i,j

xiqiDij	P
�xj

�P
+ kj

P
 , �55�

�T = ne�
i,j

xiqiDij	T
�xj

�T
+ kj

T
 , �56�

�E = ne�
i,j

xiqiDijkj
E. �57�

In case of quasineutral mixture and in the absence of external
fields, it is a common assumption to consider the plasma as
current free �10�; in such conditions, an ambipolar electric
field is generated by the plasma itself to maintain the
quasineutrality,

�EE�amb = − �
�

���� x� − �P�� ln P − �T�� ln T . �58�

If we substitute E�amb in the driving forces, these become
functions only of elemental fractions, pressure, and tempera-
ture gradients. As suggested by Murphy, new transport coef-
ficients can be defined for all the transport terms previously
considered; however their derivation is trivial and it is a par-
ticular case of the present formulation.

E. Mass fractions formulation

In many circumstances, such as the numerical solution of
the flow governing equations, it is practical to express the
transport fluxes in terms of elemental mass fraction gradients
instead of using molar fractions �9,30�. This is particularly
true for the numerical solution of the elemental continuity �8�
where the unknown variables are the elemental partial den-
sities. From the first part of Eq. �2�, we obtain

�� x� = �
�

�x�

�y�

�� y�, �59�

�x�

�y�

=
���/M� − x�/M�

�
�

y�/M�

. �60�

The expressions of the transport terms �elemental diffusion
velocities, heat flux, and electric current� are

v�� = − �
�

D̃���� y� − D�
P�� ln P − D�

T�� ln T − D�
EE� , �61�

q� = − �
�

�̃��� y� − �P�� ln P − ��T + �T��� ln T − �EE� ,

�62�

J� = Qu� − �
�

�̃��� y� − �P�� ln P − �T�� ln T − �EE� . �63�

In the above equations, new transport coefficients are used

D̃�� = �
�

D��

�x�

�y�

, �64�

�̃� = �
�

��

�x�

�y�

, �65�

�̃� = �
�

��

�x�

�y�

. �66�

Analogous expressions hold for elemental Stefan-Maxwell
coefficients and diffusion ratios.

F. General considerations

In the present work we consider flows in WNE condi-
tions, i.e., flows approaching local thermodynamic equilib-
rium. Accordingly, both chemical composition and chemical
derivatives used in the relations for the transport coefficients
are calculated within the framework of the law of mass ac-
tion �LMA�, which makes it possible to write relations �3�
and �4�. However, several studies �3,4,31,32� demonstrated
that the LMA is not valid when deviations from equilibrium
occur. Therefore, even for the WNE case, Eqs. �3� and �4� are
valid only in the inviscid flow approximation; whereas in
viscous flows, these expressions may include the higher-
order gradients of the macroscopic variables.

Nevertheless, the approach suggested in the present study
is not in contradiction with the rigorous kinetic theory for-
mulation. Transport terms and transport coefficients, consis-
tently with the philosophy underlying the Chapman-Enskog
theory, represent first-order deviations from the flow equa-
tions given by a local equilibrium Boltzmann distribution
�Euler equations�. Indeed, the first-order correction to the
distribution function is calculated using the zero-order �equi-
librium� distribution and the corresponding Euler equations.
Starting from this point, it is easy to show that the chemical
derivatives arising in the transport terms should be calculated
within the zero-order solution, i.e., on the basis of the LMA.

The only limitation of the above derivation is that while
passing from the SNE to WNE descriptions, we neglect the
cross sections of chemically reactive collisions in the linear-
ized integral operator. Indeed, the first-order distribution
functions in the SNE and WNE cases are found from differ-
ent integral equations �2,3�. The differential operator in these
equations is calculated using the zero-order solution; in this
operator the transition from the SNE to WNE case can be
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accurately performed by substituting the equilibrium chemi-
cal composition and Eq. �3�. The integral part of equations
includes the linearized integral operator for rapid processes
specified by the cross sections of the most frequent colli-
sions. In the SNE case, the most frequent collisions do not
include those resulting in chemical reactions �since chemical
reactions occur on the gas-dynamic time scale�. In the WNE
case, all collisional processes are assumed to be rapid. There-
fore, the transition between the SNE and WNE cases can be
carried out only if we neglect the cross sections of chemi-
cally reactive collisions in the integral operator. The intuitive
approach suggested above is implicitly based on this as-
sumption. This, however, essentially does not reduce the ac-
curacy of the proposed relations since the transport coeffi-
cients are specified mainly by the cross sections of elastic
collisions, whereas the contribution of those of inelastic col-
lisions �excepting for some particular polar gases� is found to
be weak �see, for instance, discussion in Refs. �3,15��. More-
over, all reliable data on the collision integrals used in prac-
tical calculations are obtained neglecting inelastic collisions.

Finally, although the method suggested in the present
study is not completely rigorous, it provides an excellent tool
to calculate the transport coefficients in the WNE conditions
within the accuracy of assumptions commonly used in the
kinetic theory.

V. DIMENSIONAL ANALYSIS

Elemental diffusion velocities depend on four different
contributions: elemental fractions gradients, pressure gradi-
ent, temperature gradient, and normalized electric field. For a
given flow, not all these contributions have the same impor-
tance. It could happen that one or more of them are negli-
gible with respect to the others. Having a methodology to
discern in advance which terms could be neglected repre-
sents a useful mean to identify the main contributions to the
diffusion velocities and to simplify eventual numerical cal-
culations. This is achieved if we demonstrate that all the
elemental diffusion coefficients D��, D�

P, D�
T, and D�

E are of

the same order of magnitude. In such a case, the terms �� x�,

�� ln P, �� ln T, and E� could be directly compared to assess if

some of them are dominant with respect to the others.
Elemental diffusion coefficients �28�–�31� are different

only for the terms containing chemical derivatives and spe-
cies diffusion ratios: �xi /�x�, P�xi /�P+ki

P, T�xi /�T+ki
T,

and ki
E. All the chemical derivatives terms have been demon-

strated to have the same order of magnitude in Ref. �14�, in
particular they are on the order of 1. By definition, also the
pressure and electric diffusion ratios are on the order of 1.
Concerning the thermal diffusion ratios, Furth �33� devel-
oped an approximate expression from which it can be de-
duced that also these quantities are on the order of 1. From
these considerations, we conclude that all the elemental dif-
fusion coefficients have the same order of magnitude

Identical considerations apply to the generalized heat con-
duction coefficients ��, �P, �T, and �E in Eq. �47� and to the
electric conduction coefficients ��, �P, �T, and �E in Eq.
�53�. Also the term �T can be demonstrated to have the same
order of magnitude as the other generalized heat conduction

coefficients �note that Lewis number � /�D̄cp, where
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D̄ is an average diffusion coefficient and cp is the mixture
specific heat at constant pressure, is always of order unity�.

VI. ILLUSTRATIVE EXAMPLE

As a numerical example, the elemental transport coeffi-
cients for the mixture considered in Sec. II are calculated.
We choose a reference pressure of 1 atm and a temperature
range of 2500–8000 K. The temperature is high enough so
that chemical reactions significatively affect the composition
but ionization remains negligible. The molar fractions of the
chemical elements �C, O� are �0.4, 0.6�. In these calculations,
the database provided by Burcat and Ruscic �34� is used for
the thermodynamic properties of the chemical species. The
collision integrals required for the computation of the trans-
port coefficients Dij, Di

T, and �� are calculated using the
approximate formulae proposed by Bzowski et al. �35�. In
the recent review by Wright et al. �36�, this data set is rec-
ognized as one of the most reliable for the mixture consid-
ered in the present paper.

In Fig. 1 the equilibrium composition in terms of species
molar fractions is given. For low temperatures, only carbon
monoxide and dioxide are present in a relevant quantity
while at the top of the temperature range the atomic species
prevail. The presence of molecular oxygen is always scarce.
Figures 2–5 show the elemental diffusion coefficients, diffu-
sion ratios, Stephan-Maxwell coefficients, and heat conduc-
tion coefficients, respectively. The generalized electric con-
duction coefficients, as well as the transport coefficients
related to the electric field, are zero since the mixture is
nonionized. The dimensional analysis proposed in the previ-
ous section is supported by the numerical results since, for a
given temperature, all the transport coefficient in each figure
have the same order of magnitude.

A curious feature can be observed in Fig. 3. The pressure
diffusion ratios k�

P are zero around 3500 and 7300 K; ap-
proximately at the same temperatures, the thermal diffusion
ratios k�

T show a relative maximum or minimum. This behav-
ior is related to the fact that around 3500 K the atomic oxy-
gen outnumbers the carbon dioxide, while around 7300 K the
atomic carbon number density becomes greater than the car-
bon monoxide’s. Regarding the generalized heat conduction
coefficients in Fig. 5, we note a remarkable increase of �T

above 6500 K; the contribution related to the pressure gradi-
ent remains always small.

VII. CONCLUSIONS

Elemental transport coefficients are extensively used for
modeling chemically reacting and plasma flows in which the
proximity to the local equilibrium is utilized to combine the
ordinary transport coefficients into just a few elemental co-
efficients.

In a recent work, we introduced a technique to calculate
chemical derivatives using a fully analytical method which
strongly reduces computational effort and numerical errors.
Starting from these findings, the general formalism of el-
emental transport coefficients for elemental diffusion veloci-
ties, heat flux, and electric current is exposed in detail. The
resulting theoretical framework is particularly suitable for
numerical implementation.

An order-of-magnitude analysis gives the possibility to
estimate in advance which are the main drivers of the trans-
port fluxes: gradients in elemental fractions, pressure or tem-
perature gradients, and electric field. A deeper insight into
the physics of chemically reacting flows near local equilib-
rium can be gained by looking only at a reduced number of
relevant parameters in the expression of the flow transport
properties.
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